

El conjunto con más experiencia para fijaciones en hormigón no fisurado

VERSIONES

- Acero zincado plateado
- Acero inoxidable
- Acero de alta resistencia a la corrosión

HOMOLOGACIONES

MATERIALES DE CONSTRUCCIÓN

Homologado para:

 Hormigón no fisurado desde H20 hasta H50

También adecuado para:

- Hormigón no fisurado H20
- Piedra natural con estructura densa

VENTAJAS

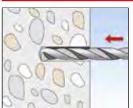
- La unidad de ampolla de resina resulta una opción muy económica en costos considerando aplicaciones individuales e instalaciones sobre cabeza.
- La diferencia entre una limpieza regular o una intensiva, permite al usuario o bien acortar tiempos de trabajo, o bien obtener el máximo nivel de carga.
- La amplia gama de varillas homologadas en distintas clases de acero, cubre las necesidades de todos los tipos de resistencia a la corrosión y ofrece la mejor y la más segura aplicación.
- Amplio rango de medidas en varillas FTR (Ø M8 – M30) con un gran abanico de aplicaciones y en consecuencia gran flexibilidad.
- La mayor profundidad de empotramiento aumenta el nivel de carga y permite disminuir la cantidad de puntos de fijación a utilizar.

APLICACIONES

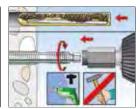
- Construcciones metálicas
- Techos y estructuras en madera
- Guard rails
- Escaleras mecánicas
- Bases para columnas
- Máquinas
- Mástiles

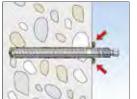
Ideal para:

- Instalaciones sobre cabeza
- Perforaciones inundadas con agua

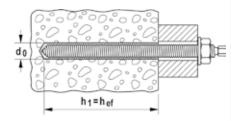

FUNCIONAMIENTO

- El anclaje de resina R es adecuado para utilizar en fijaciones pre instaladas cuando se combina con la varilla roscada FTR
- Los dos componentes de la ampolla de resina R M son una resina de vinylester libre de estireno y un catalizador.
- La varilla roscada FTR se instala utilizando un martillo preferentemente con percusión además de giro, en combinación con la herramienta de colocación suministrada en la caja.
- Durante la instalación y debido al giro, los bordes oblicuos de la varilla roscada rompen la ampolla dentro de la perforación y mezclan los componentes activando el mortero.
- La resina se adhiere en toda la superficie de la varilla roscada, fijándola en la pared dentro de la perforación y sellando la misma.


Anclaje de resina R con varilla roscada FTR



INSTALACIÓN



DATOS TÉCNICOS

Ampolla de resina ${\bf R} \; {\bf M}$

		Homolog.	Diámetro de Perforación ^d o	Profundidad mínima de perforación h ₁	Profundidad mínima de anclaje h _{ef}	Para usar con	Cantidad por caja
Tipo	Art. N°	ETA	[mm]	[mm]	[mm]		[piezas]
R M 8	050270		10	80	80	FTR Ø 8	10
R M 10	050271		12	90	90	FTR Ø 10	10
R M 12	050272		14	110	110	FTR Ø 12	10
R M 16	050273		18	125	125	FTR Ø 16	10
R M 20	050274		25	170	170	FTR Ø 20	10
R M 24	050275		28	210	210	FTR Ø 24	5
R M 30	050276		35	280	280	FTR Ø 30	5

Varilla roscada de acero **FTR**, zincado plateado

		Homolog.	Diámetro de Perforación	Profundidad de anclaje efectiva h _{ef}	Espesor máximo a fijar ^t fix	Hexágono externo de la cabeza	Llave ajuste SW	Para usar con	Cantidad por caja
Tipo	Art. N°	ETA	[mm]	[mm]	[mm]	[mm]	[mm]		[piezas]
FTR 8 x 110	45809		10	80	13	5	13	RM 8	10
FTR 10 x 130	45810		12	90	20	7	17	RM 10	10
FTR 12 x 160	45812		14	110	25	8	19	RM 12	10
FTR 16 x 190	45813		18	125	35	12	24	RM 16	10
FTR 20 x 260	45814		25	170	65	12	30	RM 20	10
FTR 24 x 300	45815		28	210	65	-	36	RM 24	5
FTR 30 x 380	45816		35	280	65	-	46	RM 30	5

TIEMPO DE CURADO

Temperatura del material base	Tiempo de curado
- 5°C - ± 0°C	120 min.
+ 0°C - +10°C	45 min.
+10°C - +20°C	20 min.
≥ - +20°C	20 min.

Nota: el tiempo de curado es aplicable en bases de anclaje secas. Cuando las perforaciones estén bajo agua se debe duplicar el mismo. Se recomienda quitar el agua de la perforación.

CARGAS

Cargas últimas Medias N_u y Cargas recomendadas N_{rec} de un conjunto de fijación R M + FTR, considerando distancias entre ejes y a los bordes óptimas¹⁾. (Cargas en KN >> 1KN = 100 Kg).

							Но	rmigón no fisura	ıdo		
Tipo					R M 8 FTR 8	R M 10 FTR 10	R M 12 FTR 12	R M 16 FTR 16	R M 20 FTR 20	R M 24 FTR 24	R M 30 FTR 30
Empotramiento		h _{ef}	[mm]		80	90	110	125	170	210	280
Profundidad de perforación		h ₀ >=	[mm]		80	90	110	125	170	210	280
Diámetro de perforación		d _o	[mm]		10	12	14	18	25	28	35
Cargas últimas Medias $N_{\rm u}$	y V _u [k	N]									
Trocción	0°	N	H20	gvz A4/C	19.0*) 25.6*)	30.20*) 40.6*)	43.8 ^{*)} 50.4	80.1	127.4*) 128.0	183.6*) 186.0	271.6
Tracción	U	N _u	H50	gvz A4/C	19.0*) 25.6*)	30.20*) 40.6*)	43.8*) 59.0*)	81.6*) 104.1*)	127.4* ⁾ 166.4	183.6*) 247.1*)	291.7*) 392.7*)
Corte	90°	V _u	H20	gvz A4/C	11.4*) 15.4*)	18.1*) 24.4*)	26.3*) 35.4*)	49.0*) 65.9*)	76.4*) 102.9*)	110.1*) 148.3*)	175.0*) 235.6*)
Cargas recomendadas $^{2)}$ N_1	_{ec} y V _{re}	c [kN]									
			H20	gvz A4/C	8.8	12.3	19.8	28.4	45.8	64.1	100.5
Tracción	0°	N _{rec}	H50	gvz A4 C	9.1 9.8 10.0	12.9	21.0	33.9	57.7	85.5	110.7
Corte	90°	V _{rec}	H20	gvz A4 C	4.2 5.9 7.3	7.6 9.3 11.6	11.0 13.5 16.9	20.5 25.1 31.3	32.0 39.2 49.0	46.1 56.5 70.5	73.3 89.8 112.1
Momento flector admisible	M _{rec} [Nm], válid	lo para vai	illas rosca	das grado 5.8, A	4-70 (acero ino	kidable A4), y C	(alta resistencia	a corrosión)		
		M _{rec}	[Nm] [Nm] [Nm]	gvz A4 C	10.9 11.9 14.9	22.3 23.8 29.7	39.4 42.1 52.6	98.9 106.7 133.1	193.1 207.9 259.4	333.7 359.9 449.1	668.0 720.7 899.4
Distancias a bordes, axiale	es y de c	omponent	es constru	ictivos							
Distancia axial mínima		smin	[mm]		40	45	55	65	85	105	140
Distancia al borde mínima		cmin	[mm]		40	45	55	65	85	105	140
Espesor mínimo del eler constructivo	nento	hmin	[mm]		110	120	150	160	220	280	370
Torque de ajuste		T _{inst}	[Nm]		10	20	40	60	120	150	300

 $^{^{1)}}$ Cargas aplicables utilizando varillas roscadas fischer FTR y temperaturas en el material base <= + 50 $^{\circ}$ C.

 $^{^{21}}$ Factor de seguridad sobre el material Y_M y sobre la carga $Y_L = 1.4$ está incluído. 9 Falla de acero decisiva, válida para varillas roscadas grado 5.8, A4-70 (acero inoxidable A4), y C (alta resistencia a corrosión).

DATOS TÉCNICOS

Mortero de inyección **FIS V 360 S**

Boquilla mezcladora **FIS S**

			.000000	Descripción	
Tipo	Art. N°	DIBt	ETA		[piezas]
FIS V 360 S	094405	•		1 cartucho por 360 ml + 2 boquillas mezcladoras FIS S	6
FIS S	061223	-	-	10 boquillas mezcladoras FIS S	10

TIEMPO DE CURADO

Temperatura del cartucho	Tiempo de trabajabilidad	Temperatura de la base de anclaje	Tiempo de curado
		- 5°C - ± 0°C	24 hrs.
		± 0°C-+ 5°C	3 hrs.
+ 5°C - +10°C	13 min.	+ 5°C - +10°C	90 hrs.
+10°C - +20°C	5 min.	+10°C - +20°C	60 hrs.
+20°C - +30°C	4 min.	+20°C - +30°C	45 hrs.
+30°C - +40°C	2 min.	+30°C - +40°C	35 hrs.

Aplicar los tiempos mencionados arriba desde el momento de formación del mortero.

Para la instalación, la temperatura del cartucho debe ser de al menos +5°C. Al trabajar con tiempos de instalación largos o con interrupciones, la boquilla mezcladora deberá ser reemplazada.

APLICADORES

Pistola de aplicación FIS AM

		Adecuado para	Cantidad
			por caja
Tipo	Art. N°		[piezas]
FIS AM	058000	FIS V 360 S - FIS VS 300 T - FIS EM 390 S - FIS P 300	1

CARGAS FIS V, FIS VS + FTR

Cargas últimas Medias N_u y Cargas recomendadas N_{rec} de un conjunto de fijación FIS V, FIS VS + FTR considerando distancias entre ejes y a los bordes óptimas (Cargas en Kn >> 1 kN = 100 kg)

					Hormigón no fisurado										
					FI	SV/N	/S	FI	SV/\	/S	FI	SV/VS		IS / VS	3
Tipo						FTR 8		FTR 10		FTR 12			FTR 16		
Tipo de acero ¹⁾					GVZ	Α4	С	GVZ	A4	С	GVZ	A4 C	GVZ	A4	С
Empetarionto ofostivo del coeleio		h _{ef, min}	[mm]			64			80			96		128	
Empotramiento efectivo del anclaje	<u>'</u>		[mm]			96			120			144		192	
Profundidad de perforación		h _o	[mm]							h _o =	• h _{ef}				
Diámetro de perforación		d _o	[mm]			10			12			14		18	
Cargas últimas medias Nu y Vu [kN]															
Tracción	l n°	N _{II}	[kN]	h _{ef, min}		15,4			17,1			22,4		69,1	
Haccion	0	''u	[KIN]	h _{ef, max}			.0*	30.0*		.0*	44.0*	59.0*	82.0*		0.0*
Corte	90°	Vu	[kN]	h _{ef, min}			.8*	14.5*	19		21.1*	26.4	39.2*	54	
COTTC	00	v u	[KIV]	h _{ef, max}	9.2*	12	.8*	14.5*	20	.3*	21.1*	29.5*	39.2*	54	.8*
Cargas recomendadas²) Nrec y Vrec [kN]															
Tracción	0°	N.	[kN]	h _{ef, min}		7.0			11.0			15.8		25.5	
Haccion	U	N _{rec}	[KIN]	h _{ef, max}		9.9	10.5	14.5	15.7	16.5	21.2	22.5 23.	7	38.3	
Corte	90°	V _{rec}	[kN]	h _{ef, min}		5.9	7.3	8.3	9.3	11.6	_		9 22.4	25.1	31.3
OUTE	00	v rec	[KIV]	h _{ef, max}	5.3	5.9	7.3	8.3	9.3	11.6	12.1	13.5 16.	9 22.4	20.1	L 1.0
Momento flector admisible M _{rec} [Nm]															
		M _{rec}	[Nm]		11.4	11.9	14.9	22.3	23.8	29.7	38.9	42.1 52.	6 98.9	106.7	133.1
Distancias a bordes, axiales y de componentes cor	structivos														
Distancia axial característica		S _{cr, Np}	[mm]			195			245			290		370	
Distancia al borde característica		C _{cr. Np}	[mm]			100			125			145		185	
Distancia axial mínima		S _{min}	[mm]			40			45			55		65	
Distancia al borde mínima		C _{min}	[mm]			40			45			55		65	
Espesor mínimo del elemento constructivo		h ·	[mm]	h _{min}		100			110			130		164	
<u>'</u>	T	h _{min}	[mm]	h _{max}		130			150			180		248	
Perforación en el objeto a ser fijado, para instalaciones al ras		df<=	[mm]			9			12			14		18	
Perforación en el objeto a ser fijado, para instalaciones a través		d _f <=	[mm]			11			14			16		20	
Torque de ajuste		T _{inst}	[Nm]			10			20			40		60	

¹⁾ Varillas roscadas grado 5.8, A4-70 (acero inoxidable A4), y C (alta resistencia a corrosión).

Calidad de Hormigón H2O

 $^{^{2)}}$ Factor de seguridad sobre el material $Y_{\mbox{M}}$ y sobre la carga $Y_{\mbox{L}}$ = 1.4 está incluído.

^{*)} Falla de acero decisiv

 $Temperaturas \ en \ el \ material \ base \ superior \ a + 35^{\circ} \ C, \ tanto \ en \ hormig\'on \ h\'umedo \ como \ seco, y \ con \ perforaciones \ limpias \ acorde \ homologaciones.$

CARGAS FIS V, FIS VS + FTR

Cargas últimas Medias N_u y Cargas recomendadas N_{rec} de un conjunto de fijación FIS V, FIS VS + FTR considerando distancias entre ejes y a los bordes óptimas (Cargas en Kn >> 1 kN = 100 kg)

								Hormiç	jón no fi	surado			
					F	IS V / V	S	F	IS V / V	S	F	IS V / V	S
Tipo						FTR 20		FTR 24			FTR 30		
Tipo de acero ¹⁾					GVZ	A4	C	GVZ	A4	С	GVZ	A4	C
Empotramiento efectivo del anclaje		h _{ef, min}	[mm]			160			192			240	
Empotramiento efectivo dei anciaje		h _{ef, max}	[mm]			240			288			360	
ofundidad de perforación		h _o	[mm]						$h_0 = h_{ef}$	-			
Diámetro de perforación		d ₀	[mm]			24			28			35	
Cargas últimas medias N _u y V _u [kN]													
Tracción	U°	N	[kN]	h _{ef, min}		96,6			127,0			177,5	
Traccion	U	N _u	[KIN]	h _{ef, max}	127.0*	171	.0*	183.0*	247	7.0*	292.0*	38	6,8
Corte	90°	\ \ \ \ \	[kN]	h _{ef, min}	61.2*	85.	.7*	88.2*	123	3.4*	140.2*	196	6.2*
COLIE	90	V _u	[KIN]	h _{ef, max}	61.2*	85	.7*	88.2*	123	3.4*	140.2*	196	6.2*
Cargas recomendadas²) N _{rec} y V _{rec} [kN]													
T	0°	N _{rec}	FLAIR	h _{ef, min}		37.9		51.7				74.5	
Tracción	U		[kN]	h _{ef, max}		56.8			77.6			114.4	
Corte	90°	V _{rec}	[kN]	h _{ef, min}	35.0	39.2	49.0	50.4	56.5	70.5	80.1	89.8	112.
COLE	30	v rec	[KIN]	h _{ef, max}	00.0	JJ.2	40.0	50.4	30.0	70.0	00.1	00.0	112.
Momento flector admisible M _{rec} [Nm]													
		M _{rec}	[Nm]		193.1	207.9	259.4	333.1	359.4	448.6	668.0	720.7	899.4
Distancias a bordes, axiales y de componentes c	onstructivos												
Distancia axial característica		S _{cr, Np}	[mm]			450			525			640	
Distancia al borde característica		C _{cr, Np}	[mm]			225			265			320	
Distancia axial mínima		S _{min}	[mm]			85			105			140	
Distancia al borde mínima		C _{min}	[mm]			85			105			140	
Fancear mínima dal alamenta constructiva			[mm]	h _{min}		200			250			310	
Espesor mínimo del elemento constructivo		hmin	[mm]	h _{max}		290			345			430	
foración en el objeto a ser fijado, para talaciones al ras		df<=	[mm]		22		26			33			
Perforación en el objeto a ser fijado, para instalaciones a través		d _f <=	[mm]			26			30			40	
Torque de ajuste		T _{inst}	[Nm]			120			150			300	

¹⁾ Varillas roscadas grado 5.8, A4-70 (acero inoxidable A4), y C (alta resistencia a corrosión).

Calidad de Hormigón H20

 $^{^{2)}}$ Factor de seguridad sobre el material Y $_{
m M}$ y sobre la carga Y $_{
m L}$ = 1.4 está incluído.

[&]quot;) Falla de acero decisiva.

Temperaturas en el material base superior a + 35° C, tanto en hormigón húmedo como seco, y con perforaciones limpias acorde homologaciones.

CARGAS FIS V CON HIERRO DE CONSTRUCCIÓN

Cargas últimas Medias N_u y Cargas recomendadas N_{rec} de un conjunto de fijación FIS V + hierro de construcción considerando distancias entre ejes y a los bordes óptimas¹¹. (Cargas en kN >> 1 kN = 100 kg)

							Hierro de c	onstrucción				
				FIS V	FIS V	FIS V	FIS V	FIS V	FIS V	FIS V	FIS V	
Tipo				Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	
Empotramiento		h _{ef}	[mm]	80	90	110	125	125	170	240	280	
Profundidad de perforación		h ₀ >=	[mm]	80	90	110	125	125	170	240	280	
Diámetro de perforación		d _o	[mm]	12	14	16	18	20	25	30	35	
Cargas últimas Medias N _u y V _u [Cargas últimas Medias N _{II} y V _{II} [kN]											
Tunnaidu	0°	N _{II}	H20	20.1	28.3	41.5	55.0	62.8	106.8	188.5	246.3	
Tracción	U		H50	23.5	33.1	48.6	64.4	73.5	125.0	220.7	288.4	
Corte	90°	V _u	H20	16.6*)	25.9*)	37.3 ^{*)}	50.8*)	66.4*)	103.7*)	162.0*)	203.2*)	
Cargas recomendadas²) N _{rec} y V	rec [kN]											
	0°	N _{rec}	H20	4.8	6.7	9.9	13.1	15.0	25.4	44.9	58.7	
Tracción	U		H50	5.6	7.9	11.6	15.3	17.5	29.8	52.5	68.7	
Corte	90°	V _{rec}	H20	7.1	11.0	15.9	21.6	28.2	44.1	68.9	86.4	
Distancias a bordes, axiales y de	compone		ructivos									
Distancia axial mínima		smin	[mm]	50	60	70	80	85	110	140	170	
Distancia al borde mínima		cmin	[mm]	50	60	70	80	85	110	140	170	
Espesor mínimo del elemento constructivo		hmin	[mm]	120	130	150	165	165	210	280	320	

 $^{^{1)}}$ Cargas aplicables utilizando hierro de construcción de acero f $_{yk}$ = 500 N/mm², bases de anclaje secas y limpias de polvo, con temperaturas en el material base <= + 50° C. $^{2)}$ Factor de seguridad sobre el material Y_M y sobre la carga Y_L = 1.4 está incluído.

Fijaciones química

El versátil mortero de inyección con curado lento para hormigón no fisurado y mampostería

Hierros de construcción

Bases de columnas

MATERIALES DE CONSTRUCCIÓN

Homologado para fijaciones en:

- Hormigón no fisurado desde H20 hasta H60
- Ladrillo hueco
- Ladrillo macizo
- Hormigón celular
- Bloque hueco de hormigón

Homologado para hierros de construcción en:

Hormigón desde H12 hasta H60

También adecuado para:

Hormigón H12

HOMOLOGACIONES

VENTAJAS

- El FIS VS con mayor tiempo de curado evita el endurecimiento prematuro en trabajos con alta temperatura ambiente, y es ideal para instalaciones en perforaciones de gran profundidad.
- El FIS VS posee varias homologaciones (hormigón no fisurado, mampostería y hierro de construcción) cubriendo asi una gran cantidad de aplicaciones en diversos materiales de construcción garantizando seguridad.
- La extensa cantidad de accesorios es ideal para el mortero de inyección FIS VS; aumenta la gran flexibilidad del sistema permitiendo un amplio rango de aplicaciones.
- El FIS VS 300 T puede ser utilizado con pistolas convencionales para aplicación de siliconas y selladores. No requiere accesorios especiales.

APLICACIONES

Mortero de inyección para usar con:

- Varillas roscadas FTR
- Insertos metálicos rosca interna RG MI
- Hierros de construcción
- Armaduras para hormigón
- Casquillo de inyección con malla FIS H N
- Reparación de fachadas

FUNCIONAMIENTO

- El FIS V es un mortero de inyección de dos componentes basado en una resina vinylester hibrida y con un mayor tiempo de fragüe.
- Tanto la resina como el catalizador se encuentran alojados en dos compartimentos separados dentro del mismo cartucho, los cuales se mezclan y se activan al ser inyectados a través de la boquilla.
- Cartuchos de inyección para una rápida y fácil instalación junto con las pistolas fischer.
- Los cartuchos parcialmente usados se pueden reutilizar simplemente cambiándole la boquilla mezcladora.
- Accesorios relacionados para diversas aplicaciones en página 41.

DATOS TÉCNICOS

Mortero de inyección **FIS VT 380 C**

Boquilla mezcladora **FIS S**

		_	пошонов.	Descripción	
Tipo	Art. N°	DIBt	ETA		[piezas]
FIS VT 380 C	059118	-		1 cartucho de inyección por 380 ml + 2 boquillas mezcladoras FIS S	12
FIS S	061223	-	-	10 boquillas mezcladoras FIS S	10

TIEMPO DE CURADO

Temperatura del cartucho	Tiempo de trabajabilidad	Temperatura de la base de anclaje	Tiempo de curado
		- 5°C - ± 0°C	24 hrs.
		± 0°C-+ 5°C	3 hrs.
+ 5°C - +10°C	9 min.	+ 5°C - +10°C	90 min.
+10°C - +20°C	5 min.	+10°C - +20°C	60 min.
+20°C - +30°C	4 min.	+20°C - +30°C	45 min.
+30°C - +40°C	2 min.	+30°C - +40°C	30 min.

Aplicar los tiempos mencionados arriba desde el momento de formación del mortero.

Para la instalación, la temperatura del cartucho debe ser de al menos +5°C. Al trabajar con tiempos de instalación largos o con interrupciones, la boquilla mezcladora deberá ser reemplazada.

APLICADORES

Pistola FIS AC

		Adecuado para	Cantidad
Tipo	Art. N°		por caja [piezas]
FIS AC	096497	FIS VT 380 C y FIS P 380 C	1

CARGAS FIS VT + FTR

Cargas últimas Medias N_u y Cargas recomendadas N_{rec} de un conjunto de fijación FIS VT + FTR considerando distancias entre ejes y a los bordes óptimas (Cargas en Kn >> 1 kN = 100 kg)

									Hormigón no fisurado								
						FIS VT			FIS VT			FIS VT		FIS VT			
Tipo						FTR 8			FTR 10			FTR 12		FTR 16			
Tipo de acero ¹⁾					GVZ	Α4	С	GVZ	Α4	С	GVZ	A4 C	GVZ	A4 C			
Farantesariante efectivo del analeia		h _{ef, min}	[mm]			64			80			96		125			
Empotramiento efectivo del anclaje		h _{ef, max}	[mm]			96			120			144		192			
Profundidad de perforación		h _o	[mm]							h ₀ =	h _{ef}						
Diámetro de perforación		do	[mm]			10			12			14		18			
Cargas últimas medias N _u y V _u [kN]																	
Tracción	0°	N.	[kN]	h _{ef, min}		13,6			17,0			22,4		34,4			
Haccion	U U	N _u	[KIN]	h _{ef, max}	19.0*	26	.0*	30.0*	41.	.0*	44.0*	59.0*	82.0*	110.0*			
Corte	90°	\ \ \ \	[kN]	h _{ef, min}	9.2*	12	.8*	14.5*	17	,0	21.1*	22,4	39.2*	54.8*			
Corte	90	V _u	[KIN]	h _{ef, max}	9.2*	12	.8*	14.5*	20.	.3*	21.1*	29.5*	39.2*	54.8*			
Cargas recomendadas ²⁾ N _{rec} y V _{rec} [kN]																	
Tracción	0°	N _{rec}	[kN]	h _{ef, min}	6.1			9.5			13.6		21.2				
Traccion	U		[KIN]	h _{ef, max}			14.2		20.5		32.6						
Corte	90°	V _{rec}	[kN]	h _{ef, min} h _{ef, max}	5.1	6.0	7.4	8.0	9.2	11.4	12.0	13.7 17.1	21.7	25.2 31.4			
Momento flector admisible M _{rec} [Nm]																	
		M _{rec}	[Nm]		11.4	11.9	14.9	22.3	23.8	29.7	38.9	42.1 52.6	98.9	106.7 133.1			
Distancias a bordes, axiales y de componentes co	nstructivo																
Distancia axial característica		S _{cr, Np}	[mm]			195			245			290		370			
Distancia al borde característica		C _{cr, Np}	[mm]			100			125			145		185			
Distancia axial mínima		S _{min}	[mm]			40			45			55		65			
Distancia al borde mínima		C_{\min}	[mm]			40			45			55		65			
Fanciar majorina del alamanta constructiva	•	h ·	[mm]	h _{min}		100			110			130		160			
Espesor mínimo del elemento constructivo		h _{min}	[mm]	h _{max}		130			150			180		230			
Perforación en el objeto a ser fijado, para instalaciones al ras		df<=	[mm]			9			12			14		18			
Perforación en el objeto a ser fijado, para instalaciones a través		df<=	[mm]			11			14			16		20			
Torque de ajuste		T _{inst}	[Nm]			10			20			40		60			

 $^{^{\}rm 1)}$ Varillas roscadas grado 5.8, A4-70 (acero inoxidable A4), y C (alta resistencia a corrosión).

²⁾ Factor de seguridad sobre el material Y_M y sobre la carga $Y_L = 1.4$ está incluído.

^{*)} Falla de acero decisiva.

 $Temperaturas \ en \ el \ material \ base \ superior \ a + 50 ^{\circ} \ C, \ tanto \ en \ hormig\'on \ h\'umedo \ como \ seco, y \ con \ perforaciones \ limpias \ acorde \ homologaciones.$

CARGAS FIS VT + FTR

Cargas últimas Medias N_u y Cargas recomendadas N_{rec} de un conjunto de fijación FIS VT + FTR considerando distancias entre ejes y a los bordes óptimas (Cargas en Kn >> 1 kN = 100 kg)

					Hormigón no fisurado								
					FIS VT			FIS VT			FIS VT		
Tipo					FTR 20			FTR 24			FTR 30		
Tipo de acero ¹⁾					GVZ	A4	С	GVZ	A4	С	GVZ	A4	С
Empotramiento efectivo del anclaje		h _{ef, min}	[mm]			160			192			240	
Linpotramiento erectivo dei anciaje		h _{ef, max}	[mm]			240			288			360	
Profundidad de perforación		h _o	[mm]						$h_0 = h_{ef}$				
Diámetro de perforación		d _o	[mm]			24			28			35	
Cargas últimas medias N _u y V _u [kN]													
Tracción	0°	N.	[kN]	h _{ef, min}		48,3			63,5			88,7	
Haccion	U	N _u	[KN]	h _{ef, max}	127.0*	16	8.9	183.0*	23	0.2	292.0*	33	9.3
Corte	90°	V _u	[kN]	h _{ef, min}		85	.7*	88.2*	123	3.4*	140.2*		7.5
Corte	30	V u	[KIN]	h _{ef, max}	61.2*	85.7*		88.2*	123.4*		140.2*	40.2* 196.2*	
Cargas recomendadas²) N _{rec} y V _{rec} [kN]													
Tracción	0°	N _{rec}	[kN]	h _{ef, min}				43.1			62.8		
Traccion	U	rec	[KIN]	h _{ef, max}		47.9		64.6		94.2		,	
Corte	90°	V _{rec}	[kN]	h _{ef, min} h _{ef, max}	34.3	39.4	49.1	49.14	56.3	70.3	78.3	89.7	112.0
Momento flector admisible M _{rec} [Nm]													
		M _{rec}	[Nm]		193.1	207.9	259.4	333.1	359.4	448.6	668.0	720.7	899.4
Distancias a bordes, axiales y de componentes cor	structivos												
Distancia axial característica		S _{cr, Np}	[mm]			450			525			640	
Distancia al borde característica		C _{cr, Np}	[mm]		225			265			320		
Distancia axial mínima		S _{min}	[mm]			85			105			140	
Distancia al borde mínima		C_{\min}	[mm]			85			105			140	
Espesor mínimo del elemento constructivo	or mínimo del elemento constructivo		[mm]	h _{min} h _{max}		210 290		250 345				310 430	
Perforación en el objeto a ser fijado, para instalaciones al ras		d _f <=	[mm]		22		26			33			
Perforación en el objeto a ser fijado, para instalaciones a través	' ' ' d _c <= mm			26		30		40					
Torque de ajuste		T _{inst}	[Nm]			120			150			300	

¹⁾ Varillas roscadas grado 5.8, A4-70 (acero inoxidable A4), y C (alta resistencia a corrosión).

²⁾ Factor de seguridad sobre el material YM y sobre la carga YL = 1.4 está incluído.

^{*)} Falla de acero decisiva.

Temperaturas en el material base superior a + 50° C, tanto en hormigón húmedo como seco, y con perforaciones limpias acorde homologaciones.

DATOS TÉCNICOS

Mortero de inyección **FIS P 300 T**

Boquilla mezcladora

FIS S

		-	.6010010	Descripción	Cantidad por caja
Tipo	Art. N°	DIBt	ETA		[piezas]
FIS P 300 T	093175	-	-	1 cartucho de inyección por 300 ml + 2 boquillas mezcladoras FIS S	12
FIS S	061223	-	-	10 boquillas mezcladoras FIS S	10

TIEMPO DE CURADO

Temperatura del cartucho	Tiempo de trabajabilidad	Temperatura de la base de anclaje	Tiempo de curado
		- 0°C-+ 5°C	6 hrs.
+ 5°C - +10°C	15 min.	+ 5°C - +10°C	3 hrs.
+10°C - +20°C	8 min.	+10°C - +20°C	2 hrs.
+20°C - +30°C	5 min.	+20°C - +30°C	60 min.
+30°C - +40°C	3 min.	+30°C - +40°C	30 min.

Aplicar los tiempos mencionados arriba desde el momento de formación del mortero.

Para la instalación, la temperatura del cartucho debe ser de al menos +5°C. Al trabajar con tiempos de instalación largos o con interrupciones, la boquilla mezcladora deberá ser reemplazada.

APLICADORES

Pistola de aplicación **FIS AM**

Pistola de aplicación convencional KP M 2

		Adecuado para	Cantidad por caja
Tipo	Art. N°		[piezas]
FIS AM	058000	FIS V 360 S - FIS VS 300 T - FIS EM 390 S - FIS P 300 T	1
KP M 2	053117	FIS VS 300 T - FIS P 300 T	1

Sistemas de fijación para hormigón no fisurado

Columnas metálicas

Estructuras metálicas

VERSIONES (PARA FTR)

- Acero zincado plateado
- Acero inoxidable

MATERIALES DE CONSTRUCCIÓN

Homologado para:

 Hormigón no fisurado desde H20 hasta H60

También adecuado para:

Hormigón no fisurado H12

HOMOLOGACIONES

VENTAJAS

- Mortero de alta performance que brinda las más altas cargas en hormigón no fisurado.
- Es posible variar la profundidad de empotramiento, según nivel de carga requeridos.
- Rápida instalación manual sin necesidad de utilizar herramientas o accesorios para la colocación, lo que reduce y simplifica las tareas.
- Rápida y simple instalación a través del objeto a fijar, lo que reduce tiempos de instalación y costos.
- Varillas roscadas Grado 5.8 o A4 garantizan la más alta resistencia del acero y los máximos momentos permisibles.

APLICACIONES

- Estructuras de acero
- Rieles
- Barandas
- Consolas
- Máquinas
- Escaleras mecánicas
- Fachadas
- Aberturas
- Sistemas de almacenamiento
- Toldos

FUNCIONAMIENTO

- Sistema ideal para utilizar con morteros de inyección FIS V, FIS VS, FIS VT, y con FIS EM en hormigón no figurado.
- Las varillas roscadas pueden ser también colocadas a través del objeto a fijar.
- El mortero adhiere toda la superficie de la varilla roscada a la pared interna de la perforación y sella el agujero en toda su longitud.
- Se pueden utilizar varillas de acero inoxidable en aplicaciones a la intemperie o en anclajes sumergidos bajo agua utilizando el FIS EM.

PARA USO CON

Mortero de inyección FIS EM

Ver página 19

Mortero de inyección FIS V

Ver página 24

Mortero de inyección FIS VS

Ver página 29

Mortero de inyección FIS VT

Adhesivo estructural FCS

Ver página 31 🐸 😅 Ver página 42

El conjunto con más experiencia para fijaciones en hormigón no fisurado

VERSIONES

- Acero zincado plateado
- Acero inoxidable
- Acero de alta resistencia a la corrosión

HOMOLOGACIONES

MATERIALES DE CONSTRUCCIÓN

Homologado para:

 Hormigón no fisurado desde H20 hasta H50

También adecuado para:

- Hormigón no fisurado H20
- Piedra natural con estructura densa

VENTAJAS

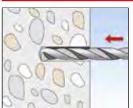
- La unidad de ampolla de resina resulta una opción muy económica en costos considerando aplicaciones individuales e instalaciones sobre cabeza.
- La diferencia entre una limpieza regular o una intensiva, permite al usuario o bien acortar tiempos de trabajo, o bien obtener el máximo nivel de carga.
- La amplia gama de varillas homologadas en distintas clases de acero, cubre las necesidades de todos los tipos de resistencia a la corrosión y ofrece la mejor y la más segura aplicación.
- Amplio rango de medidas en varillas FTR (Ø M8 – M30) con un gran abanico de aplicaciones y en consecuencia gran flexibilidad.
- La mayor profundidad de empotramiento aumenta el nivel de carga y permite disminuir la cantidad de puntos de fijación a utilizar.

APLICACIONES

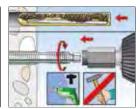
- Construcciones metálicas
- Techos y estructuras en madera
- Guard rails
- Escaleras mecánicas
- Bases para columnas
- Máquinas
- Mástiles

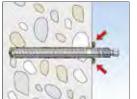
Ideal para:

- Instalaciones sobre cabeza
- Perforaciones inundadas con agua

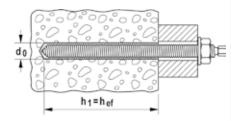

FUNCIONAMIENTO

- El anclaje de resina R es adecuado para utilizar en fijaciones pre instaladas cuando se combina con la varilla roscada FTR
- Los dos componentes de la ampolla de resina R M son una resina de vinylester libre de estireno y un catalizador.
- La varilla roscada FTR se instala utilizando un martillo preferentemente con percusión además de giro, en combinación con la herramienta de colocación suministrada en la caja.
- Durante la instalación y debido al giro, los bordes oblicuos de la varilla roscada rompen la ampolla dentro de la perforación y mezclan los componentes activando el mortero.
- La resina se adhiere en toda la superficie de la varilla roscada, fijándola en la pared dentro de la perforación y sellando la misma.


Anclaje de resina R con varilla roscada FTR



INSTALACIÓN



DATOS TÉCNICOS

Ampolla de resina ${\bf R} \; {\bf M}$

		Homolog.	Diámetro de Perforación ^d o	Profundidad mínima de perforación h ₁	Profundidad mínima de anclaje h _{ef}	Para usar con	Cantidad por caja
Tipo	Art. N°	ETA	[mm]	[mm]	[mm]		[piezas]
R M 8	050270		10	80	80	FTR Ø 8	10
R M 10	050271		12	90	90	FTR Ø 10	10
R M 12	050272		14	110	110	FTR Ø 12	10
R M 16	050273		18	125	125	FTR Ø 16	10
R M 20	050274		25	170	170	FTR Ø 20	10
R M 24	050275		28	210	210	FTR Ø 24	5
R M 30	050276		35	280	280	FTR Ø 30	5

Varilla roscada de acero **FTR**, zincado plateado

		Homolog.	Diámetro de Perforación d _o	Profundidad de anclaje efectiva h _{ef}	Espesor máximo a fijar ^t fix	Hexágono externo de la cabeza	Llave ajuste SW	Para usar con	Cantidad por caja
Tipo	Art. N°	ETA	[mm]	[mm]	[mm]	[mm]	[mm]		[piezas]
FTR 8 x 110	45809		10	80	13	5	13	RM 8	10
FTR 10 x 130	45810		12	90	20	7	17	RM 10	10
FTR 12 x 160	45812		14	110	25	8	19	RM 12	10
FTR 16 x 190	45813		18	125	35	12	24	RM 16	10
FTR 20 x 260	45814		25	170	65	12	30	RM 20	10
FTR 24 x 300	45815		28	210	65	-	36	RM 24	5
FTR 30 x 380	45816		35	280	65	-	46	RM 30	5

TIEMPO DE CURADO

Temperatura del material base	Tiempo de curado
- 5°C - ± 0°C	120 min.
+ 0°C - +10°C	45 min.
+10°C - +20°C	20 min.
≥ - +20°C	20 min.

Nota: el tiempo de curado es aplicable en bases de anclaje secas. Cuando las perforaciones estén bajo agua se debe duplicar el mismo. Se recomienda quitar el agua de la perforación.

CARGAS

Cargas últimas Medias N_u y Cargas recomendadas N_{rec} de un conjunto de fijación R M + FTR, considerando distancias entre ejes y a los bordes óptimas¹⁾. (Cargas en KN >> 1KN = 100 Kg).

							Но	rmigón no fisura	ıdo		
Tipo					R M 8 FTR 8	R M 10 FTR 10	R M 12 FTR 12	R M 16 FTR 16	R M 20 FTR 20	R M 24 FTR 24	R M 30 FTR 30
Empotramiento		h _{ef}	[mm]		80	90	110	125	170	210	280
Profundidad de perforación		h ₀ >=	[mm]		80	90	110	125	170	210	280
Diámetro de perforación		d _o	[mm]		10	12	14	18	25	28	35
Cargas últimas Medias $N_{\rm u}$	y V _u [k	N]									
Trocción	0°	N	H20	gvz A4/C	19.0*) 25.6*)	30.20*) 40.6*)	43.8 ^{*)} 50.4	80.1	127.4*) 128.0	183.6*) 186.0	271.6
Tracción	U	N _u	H50	gvz A4/C	19.0*) 25.6*)	30.20*) 40.6*)	43.8*) 59.0*)	81.6*) 104.1*)	127.4* ⁾ 166.4	183.6*) 247.1*)	291.7*) 392.7*)
Corte	90°	V _u	H20	gvz A4/C	11.4*) 15.4*)	18.1*) 24.4*)	26.3*) 35.4*)	49.0*) 65.9*)	76.4*) 102.9*)	110.1*) 148.3*)	175.0*) 235.6*)
Cargas recomendadas $^{2)}$ N_1	_{ec} y V _{re}	c [kN]									
			H20	gvz A4/C	8.8	12.3	19.8	28.4	45.8	64.1	100.5
Tracción	0°	N _{rec}	H50	gvz A4 C	9.1 9.8 10.0	12.9	21.0	33.9	57.7	85.5	110.7
Corte	90°	V _{rec}	H20	gvz A4 C	4.2 5.9 7.3	7.6 9.3 11.6	11.0 13.5 16.9	20.5 25.1 31.3	32.0 39.2 49.0	46.1 56.5 70.5	73.3 89.8 112.1
Momento flector admisible	M _{rec} [Nm], válid	lo para vai	illas rosca	das grado 5.8, A	4-70 (acero ino	kidable A4), y C	alta resistencia	a corrosión)	'	
		M _{rec}	[Nm] [Nm] [Nm]	gvz A4 C	10.9 11.9 14.9	22.3 23.8 29.7	39.4 42.1 52.6	98.9 106.7 133.1	193.1 207.9 259.4	333.7 359.9 449.1	668.0 720.7 899.4
Distancias a bordes, axiale	es y de c	omponent	es constru	ictivos							
Distancia axial mínima		smin	[mm]		40	45	55	65	85	105	140
Distancia al borde mínima		cmin	[mm]		40	45	55	65	85	105	140
Espesor mínimo del eler constructivo	nento	hmin	[mm]		110	120	150	160	220	280	370
Torque de ajuste		T _{inst}	[Nm]		10	20	40	60	120	150	300

 $^{^{1)}}$ Cargas aplicables utilizando varillas roscadas fischer FTR y temperaturas en el material base <= + 50 $^{\circ}$ C.

 $^{^{21}}$ Factor de seguridad sobre el material Y_M y sobre la carga $Y_L = 1.4$ está incluído. 9 Falla de acero decisiva, válida para varillas roscadas grado 5.8, A4-70 (acero inoxidable A4), y C (alta resistencia a corrosión).